
1. Introduction
As energetic electrons, protons, and photons are deposited into the high-latitude upper atmosphere, their depos-
ited energy begins cascades of energy and interactions that excite and ionize atmospheric oxygen and nitrogen 
species. This molecular and atomic ionization and dissociation processes result in emissions in the visible, ultravi-
olet, and extreme-ultraviolet spectra called the aurora. Being able to understand the Earth's aurora provides great 
insight into physical mechanisms behind the coupling among the magnetosphere, ionosphere, and thermosphere 
(MIT), and the interactions of this coupled MIT system with the solar wind. Simultaneous global observations of 
the aurora over the high-latitude region achieved in the past with space-based instruments have proved essential 
to these efforts. Examples of these instruments include far ultraviolet (FUV) imagers on board spacecraft with 
highly elliptical near-polar orbits such as the NASA IMAGE and POLAR satellites (Burch et al., 2001; Germany 
et al., 1998). However, since the deactivation of POLAR in 2008 and loss of contact with IMAGE in 2005, our 
global observing capabilities of aurora have since been lost. As a result, our space-based coverage of the polar 

Abstract Far ultraviolet (FUV) imaging of the aurora from space provides great insight into the 
dynamic coupling of the atmosphere, ionosphere, and magnetosphere on global scales. To gain a quantitative 
understanding of these coupling processes, the global distribution of auroral energy flux is required, but 
the inversion of FUV emission to derive precipitating auroral particles' energy flux is not straightforward. 
Furthermore, the spatial coverage of FUV imaging from Low Earth Orbit (LEO) altitudes is often insufficient 
to achieve global mapping of this important parameter. This study seeks to fill these gaps left by the current 
geospace observing system using a combination of data assimilation and machine learning techniques. 
Specifically, this paper presents a new data-driven modeling approach to create instantaneous, global 
assimilative mappings of auroral electron total energy flux from Lyman-Birge-Hopfield (LBH) emission data 
from the Defense Meteorological System Program (DMSP) Special Sensor Ultraviolet Spectrographic Imager 
(SSUSI). We take a two-step approach; the creation of assimilative maps of LBH emission using optimal 
interpolation, followed by the conversion to energy flux using a neural network model trained with conjunction 
observations of in-situ auroral particles and LBH emission from the DMSP Special Sensor J and SSUSI 
instruments. The paper demonstrates the feasibility of this approach with a model prototype built with DMSP 
data from 17 February 2014 to 23 February 2014. This study serves as a blueprint for a future comprehensive 
data-driven model of auroral energy flux that is complementary to traditional inversion techniques to take 
advantage of FUV imaging from LEO platforms for global assimilative mapping of auroral energy flux.

Plain Language Summary When energetic protons and electrons interact with the nitrogen gas 
molecules of the Earth's atmosphere at high latitudes, light emissions including ultraviolet emissions in the 
Lyman-Birge-Hopfield (LBH) band are created. Our goal is to make global maps of the energy flux of these 
particles using images of these LBH emissions observed by the Defense Meteorological System Program 
(DMSP) Low Earth Orbiting (LEO) satellites. This is a challenging task because ultraviolet imagers onboard 
LEO satellites can only provide partial coverage of the global high-latitude region and emissions are indirect 
measurements of the energy flux. To address these problems, we first determine a small set of global patterns 
from lots of DMSP data that efficiently explain how these LBH emissions vary over time. By using these global 
patterns, we then make global maps of LBH emissions for a particular time from instantaneous LBH emission 
observations. We finally relate global LBH emission maps to the energy flux using a neural network model 
trained with data from another DMSP instrument that measures the energy flux of precipitating particles as 
well as LBH emission data. Our study serves as a blueprint for a future comprehensive data-driven modeling of 
auroral energy flux from ultraviolet imagers onboard LEO satellites.
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region is limited to more recently active imagers operating from satellites in low Earth orbit (LEO). Two of these 
FUV imagers are the GUVI instrument on the TIMED spacecraft (Christensen et al., 2003) and the SSUSI instru-
ments on the DMSP satellite constellation (Paxton et al., 2002). Due to the relatively low altitude of the satel-
lites and improved data link capabilities, these currently operating imagers produce significantly higher spatial 
resolution than the past imagers but can only provide partial disk coverage. SSUSI's deployment on multiple 
DMSP spacecraft allows for a greater frequency of observations across multiple tracks in the polar region. As a 
result, SSUSI's current catalog of more than a decade of FUV emission data can play a role in both quantitatively 
and qualitatively describing auroral processes. Scientific pursuits to better understand global auroral dynamics, 
substorm surges, hemispheric asymmetry and dawn-dusk asymmetry of the aurora culminate in ongoing desires 
to improve the usage of currently available observations of aurora, which is a driving motivation of this study.

Understanding the inter-hemispheric symmetry and asymmetry of the aurora, for instance, requires simultane-
ous multi-scale knowledge of aurora for both hemispheres. While the assumption of hemispheric symmetry can 
allow for greater observational coverage over the high-latitude region, recent studies on dayside auroral energy 
flux using TIMED-GUVI data have shown asymmetries of the dayside aurora morphology due to differences in 
solar insolation (Liou & Mitchell, 2020a, 2020b). It is also known that the impact of the interplanetary magnetic 
field (IMF) orientation, especially BY component, and dipole tilt angle on MIT coupling often results in the 
hemispheric asymmetry of the aurora, for example, using ultraviolet images taken from IMAGE and POLAR 
spacecraft in highly elliptical orbits (Fillingim et al., 2005; Østgaard et al., 2005). Other studies that have taken 
advantage of the wider spatial coverage provided by space-based ultraviolet imager data include investigations 
of the dynamical evolution of dayside-nightside and dawn-dusk asymmetries association with auroral substorms. 
For example, the expansion phase of auroral substorms is characterized by increased intensity of the equatorward 
boundary of the auroral oval followed by a rapid breakup and poleward motion of auroral arcs on the nightside 
(Akasofu, 1964). Imager data can also help us to study transient effects such as interplanetary shocks and their 
impact on auroral morphology. Features associated with the dayside shock aurora are particularly difficult to 
observe since observations must be made near local noon during the event time interval of approximately 15 min 
from shock arrival (Zhou et al., 2009). To study these phenomena, Liou and Mitchell (2020a) used global space-
based POLAR ultraviolet image data, while Zhou et al. (2009) used ground-based all-sky imager data. To better 
understand the energy spectrum of particle precipitation associated with shock auroras, the use of in-situ meas-
urements from the FAST and DMSP satellites has been shown to be critical (Zhou et al., 2003).

Despite the benefits of aurora imaging, in-situ instruments such as the Special Sensor J (SSJ) instrument on 
the DMSP satellite constellation (Redmon et al., 2017), MPA instrument on the LANL satellites (Sicard-Piet 
et al., 2008), and MEPED on NOAA POES (Asikainen & Mursula, 2013) are required to directly measure the 
energy spectrum of incident energetic particles. Information about electron-volt energy carried by precipitating 
energetic electrons and protons is necessary to understand the magnetospheric processes responsible for aurora 
and compute auroral ionization profiles for modeling thermosphere and ionosphere responses to the aurora. In 
fact, currently, existing models of auroral energy flux are primarily reliant on auroral flux measurements by 
in-situ measurements (Hardy et al., 1989; Newell et al., 2009, 2014; Spiro et al., 1982). Used by both NOAA and 
the Air Force, the Ovation Prime model (Newell et al., 2009, 2014) has been the de facto standard for forecasting 
the diffuse, monoenergetic, broadband, and proton auroras. While the model is built from observations from the 
SSJ version 4 (SSJ/4) and version 5 (SSJ/5) instruments on board DMSP satellites, the Ovation Prime model is 
driven by an empirical function proportional to the dayside magnetic merging rate that can be computed from 
solar wind data (Newell et al., 2009). Its newer version extends spatial coverage with the inclusion of FUV data 
from the GUVI instrument by inverting FUV observations using physics-based flux transport models (Newell 
et al., 2014). Specifically, FUV emissions in the Lyman-Birge-Hopfield (LBH) band are of primary interest for 
determining energy flux parameters, such as the mean energy and total energy flux. These emissions occur in the 
140–180 nm range after excitation of molecular nitrogen (N2). Examples of physics-based models used include 
Global Airglow (GLOW) model (Solomon,  2017), Boltzmann 3-Constituent (B3C; Strickland et  al.  [1993]), 
and Atmospheric Ultraviolet Radiance Integrated Code (AURIC; Strickland et al., 1999). The B3C and AURIC 
models are used to estimate the auroral energy flux from GUVI data in the Ovation Prime model (Newell 
et al., 2014), and the B3C model is used to produce the SSUSI Auroral Environmental Data Records (EDR) 
products from SSUSI data (Johns Hopkins University Applied Physics Laboratory SSUSI Team, 2013). Rigor-
ous inverse modeling involving the GLOW, B3C, and AURIC models are complex and computationally costly, 
so pre-computed look-up tables are used in the retrieval process. For example, with the help of lookup tables 
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generated from the B3C electron and ion transport model, the operational algorithm used for SSUSI Auroral EDR 
data products relates the ratio of LBHL (165–180 nm) and LBHS (140–150 nm) emissions to the mean energy 
of auroral energy flux and LBHL emission intensity to the total energy. In contrast to the physics-based inversion 
approach, empirical approaches can be advantageous because of lower initial computational costs and the elimi-
nation of errors introduced by inadequate physical assumptions about the ionosphere and thermosphere system. 
Empirical approaches have often relied on a statistical linear relationship estimated from coincident data between 
the SSJ and SSUSI instruments in the past (Sotirelis et al., 2013). (The empirical model of Sotirelis et al. (2013) 
is referred to as S13 later in the paper). The work by R. M. McGranaghan et al. (2021) has produced a new model 
of total electron energy flux from a combination of DMSP SSJ data and solar wind parameters that achieves a 
50% reduction in errors compared to OVATION Prime. Additionally, the work by Robinson et al.  (2018) has 
derived auroral energy flux based on statistical relationships between field-aligned currents and LBH emissions.

While the Ovation Prime model provides statistical maps for four different types of aurora, it is not designed 
to ingest instantaneous observations like data assimilative procedures such as Assimilative Mapping of Iono-
spheric Electrodynamics (AMIE; Richmond & Kamide [1988]) and its recent extension Assimilative Mapping 
of Geospace Observations (AMGeO; Matsuo [2020]). Lu (2017) provides an overview of applications of AMIE 
procedure for global predictions of ionospheric conductance using SSJ in-situ particle and inferred auroral mean 
energy and total flux parameters from the POLAR imager data. The use of the Robinson et al. (1987) empirical 
relationship between auroral flux parameters to conductance is adopted in both AMIE and AMGeO procedures. 
Assimilative mappings of Hall and Pedersen conductance created using pseudo conductance observations from 
the SSJ instruments using GLOW by R. McGranaghan et al. (2015); R. McGranaghan et al. (2016) overcome 
the limiting assumption of the Maxwellian auroral particle distribution. However, none of these assimilative 
mappings are equipped to use FUV imager data directly. To expand upon the previous assimilative mapping 
approaches, this work takes advantage of recent developments in machine learning to incorporate a capability 
to predict auroral energy flux from LBH emission so that FUV imager data can be directly ingested into global 
assimilative mapping procedures.

With the recognition of the limitations of current space-based in-situ and remote sensing observing systems for 
auroral energy flux, we present a blueprint for an end-to-end, data-driven modeling approach that enables assim-
ilative mapping of auroral energy flux from space-based FUV images. Given important roles played by global 
space-based FUV images and global empirical models of auroral energy flux in addressing outstanding science 
questions in MIT coupling, this work is expected to contribute to extending scientific return from space-based 
observations of the aurora by the DMSP constellation. We demonstrate the feasibility of this new approach with 
a prototype developed using the DMSP F16, F17, and F18 SSUSI and SSJ data for the period of February 17th 
through the 23rd of 2014. The paper is structured as follows: Section 2 presents the preprocessing of the SSJ and 
SSUSI products used, Section 3 outlines a roadmap for three data analysis methods used for this prototyping 
approach with methodological details given in subsections, Section 4 presents the results from these methods, 
Section 5 describes use case of this prototype method, and Section 6 discusses the limitations of the modeling 
approach.

2. Data Selection and Preprocessing
In this section, we begin with a brief overview of geophysical conditions of the time frame selected for proto-
typing and demonstration of the approach (Section 2.1). We then describe several preprocessing steps required 
for in-situ observations of auroral particle precipitation from the SSJ instrument (Section 2.2) and remote-sens-
ing observations of far ultraviolet emissions from the SSUSI instrument (Section  2.3) as well as analysis of 
spatial-temporal conjunctions between these two types of observations (Section 2.4).

2.1. Geophysical Conditions for 17 February 2014–23 February 2014

Figure 1 presents the time series of the Auroral Electrojet (AE), Disturbance Storm Time (DST), and NASA 
OMNIWeb SYM-H indices as well as the Interplanetary Magnetic Field (IMF) components By and Bz for this 
week-long period of February 17th to 23 February 2014. This period was selected for its wide range of geophys-
ical conditions. A series of Earth-directed coronal mass ejections launched starting on February 16th, creating 
three interplanetary shocks which resulted in three geomagnetic storms suggested in DST and SYM-H indices 
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(Durgonics et al., 2017; Ghamry et al., 2016). The three storms are accompanied by strong auroral electrojet as 
indicated by AE index and auroral emissions as seen in SSUSI LBH emission data. This time period is also one of 
the events selected by the Coupling, Energetics and Dynamics of Atmospheric Regions Grand Challenge multi-
scale ionosphere-thermosphere system dynamics.

2.2. SSJ

The study uses in-situ observations of particle precipitation from the SSJ/5 instrument on board the DMSP F16, 
F17, and F18 satellites in magnetic coordinates available from the NASA CDAWeb. These instruments are single 
triquadraspheric electrostatic analyzers that achieve a total field of view of 4° by 90° (Hardy et al., 2008). The 
SSJ/5 instrument observes electron and ion flux from particle collision counts across the instrument's 20 logarith-
mically distributed energy channels (energy range: 30 eV to 30 keV. These observations occur at a temporal reso-
lution of one per second cadence which corresponds to a spatial resolution of approximately 0.1°. These 20-chan-
nel energy flux measurements are then integrated to yield electron total energy flux and ion total energy flux 
values following the processing detailed in (Redmon et al., 2017). Following the notation of Hardy et al. (2008), 
these electron and ion total energy flux observations are denoted as JE and JI, respectively. As our focus is to 

Figure 1. Geophysical conditions during the study period of February 17th to 23rd, 2014. Top: Auroral Electrojet (AE), Disturbance Storm Time, and SYMH Indices. 
Middle: Solar wind speed and pressure. Bottom: interplanetary magnetic field By and Bz Components in GSM Coordinates. Three major spikes in the AE index 
correspond to three geomagnetic storms. The triangle mark in the bottom plot denotes an example pass time which is the center time of the Northern Hemispheric pass 
by DMSP F17 at February 20th 4:02 UTC. Results at this example pass time are presented in Figures 2, 6, 8 and 12.
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build a global mapping of electron total energy flux in the auroral region, we have used observations poleward of 
|50°| degrees magnetic latitude. These electron and ion total energy flux values (JE and JI) are used to determine 
a relationship between LBH emissions and electron total energy flux in Section 3.3.

2.3. SSUSI

The SSUSI instrument records FUV radiance images as cross-track swaths occurring every 22 s, with simultane-
ous sampling in the along-track direction. Under normal operation, the SSUSI instrument records FUV emissions 
in terms of light intensities across 5 wavelength bands or ”colors”. The two colors that relate to LBH emissions, 
the LBHS band spanning wavelengths of 140–150 nm and LBHL band spanning wavelengths of 165–180 nm, 
are used. Observations of LBH emissions used in the study are taken from the version 0116 SSUSI SDR data 
product from the NASA CDAweb. In the SDR product used, these LBH radiance measurements are adjusted to 
be what would be seen if the same piercepoint locations (where a line of sight of measured radiance intersects a 
ionospheric shell) were observed from directly overhead (Johns Hopkins University Applied Physics Laboratory 
SSUSI Team, 2013). This process of accommodating for observation look angle is called rectification. LBH 
emission observation locations and times are taken from the auroral piercepoint measurements and LBH emis-
sions are taken from the high resolution disk rectified intensity auroral measurements. The auroral piercepoint 
measurement locations given in terms of geographic latitude and longitude in the SDR product are then converted 
to magnetic latitude and longitude using Apex geomagnetic coordinates (Richmond, 1995) at a reference altitude 
of 110 km. As with the SSJ observations, only observations poleward of |50°| magnetic latitude are used.

2.3.1. Removal of Solar Influence

The FUV radiances contained in the SSUSI SDR data product are high-resolution and can be generated by both 
solar illumination and auroral particle precipitation. The total radiance values in the LBHL and LBHS band are 
denoted as ILBHL, total and ILBHS, total, respectively, while the auroral contribution are denoted as ILBHL and ILBHS, 
respectively. See an example of the total LBHL emission ILBHL, total from the high-resolution SSUSI SDR prod-
uct, shown in the left plot of Figure 2 in magnetic coordinates, for a Northern Hemisphere high-latitude pass 
by DMSP F17 during the UTC 3:49 to 5:31 on February 17th. This subsection describes a preprocessing step 
applied to ILBHL, total and ILBHS, total to isolate LBH emissions ILBHL and ILBHS due to auroral particle precipitation. 
Note that this SSUSI data preprocessing is done at high resolution, and ILBHL and ILBHS are the same resolution as 
the SSUSI SDR data products.

To isolate the auroral contribution from the solar contribution in the SSUSI LBH emission data, methods from 
(Robinson et al., 2018) are used. By linearly fitting the total LBH radiances to the cosine of the solar zenith angle 
of the observation locations, an approximate model can be made for the solar influence as follows.

Figure 2. SSUSI SDR LBHL emissions for the Northern Hemispheric pass by DMSP F17 February 20th 4:02 UTC. For all dial plots shown in the Apex geomagnetic 
coordinates, the dynamic range is 0–2 kilorayleighs with darker colors indicating smaller radiance. Left: High-resolution LBHL radiance given by SSUSI SDR product 
(ILBHL, total). Center: High-resolution LBHL radiance with solar influence removal (ILBHL). Right: Binned LBHL radiance with solar influence removal and spatial 
averaging (ILBHL, binned).
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where Ψ is the solar zenith angle and ILBHL, Solar is the solar contribution to the total LBHL radiance measured by 
SSUSI, ILBHL, total. AL and bL are constants determined through least squares linear fitting on a set of SSUSI LBHL 
emission data. The solar contribution to the LBHL data is then subtracted from the total LBHL radiance ILBHL, 

Total to yield the auroral LBHL radiance ILBHL. For each hemispheric pass, the coefficients AL and bL are refitted to 
determine the solar influence on that particular pass. If the subtraction of the solar contribution results in a nega-
tive value, ILBHL is set to 0. See the middle plot of Figure 2 for an example of the ILBHL calculated from ILBHL, Total 
for a DMSP F17 pass during the UTC 3:49 to 5:31 on February 17th. This process is repeated for the total LBHS 
radiance to determine the auroral LBHS emission ILBHS. For the remainder of this paper, these preprocessed data 
ILBHL and ILBHS are referred to as LBHL and LBHS emission data. ILBHL and ILBHS data are then used in neural 
network analysis described in Section 3.3.

2.3.2. Spatial Binning and Averaging

Spatial binning and averaging the preprocessed data (with the solar irradiance removed) facilitate assimilative 
mapping and principal component analysis of LBH emission data ILBHL and ILBHS, using the polar-cap spheri-
cal harmonics basis functions developed for the AMIE (Richmond & Kamide, 1988) and used in the AMGeO 
(Matsuo, 2020), as described in Sections 3.2 and 3.1. This preprocessing also makes overall computational cost 
manageable. Note that fine-scale features visible in the high-resolution SDR data product, that are averaged out 
by this spatial binning process, cannot be captured with the adopted basis functions at the spherical harmonics 
degree and order of about 72 and 12, corresponding to the resolution of 2.5° in latitude and 15° in longitude.

ILBHL and ILBHS obtained from preprocessing described in Section 2.3.1 are here spatially binned using equal area 
binning, with a constant bin width of 2° in latitude, but variable width in the longitude to approximate equal 
surface area for each bin. For each spatial bin of ILBHL data, a mean value is used as the representative radiance 
value for that spatial bin ILBHL, binned and a variance value with respect to the mean is computed. This process is 
repeated for ILBHS to yield ILBHS, binned. The effect of spatial binning and averaging can be seen in the middle and 
right plots of Figure 2 where the number of LBHL emission data points are reduced from 14,085 to 456. These 
spatially binned LBH data, ILBHL, binned and ILBHS, binned, are then used in assimilative mapping and principal compo-
nent analysis described in Sections 3.1 and 3.2.

2.4. SSUSI and SSJ Conjunctions

In order to establish a quantitative relationship between electron total energy flux and LBH emissions using 
neural network analysis described in Section 3.3, a training data set is required. SSUSI LBHL and LBHS emis-
sion ILBHL and ILBHS data and SSJ electron and ion energy flux JE and JI data need to be paired as input and super-
visory (output) data. Due to the spatial-temporal sampling mismatch between the SSUSI LBH imager and SSJ 
particle precipitation instrument, several steps are required to determine the SSUSI-SSJ conjunction.

Since the resolution of LBH emission observations or ”pixels” in the SSUSI SDR data product is considera-
bly higher than a spatial sampling of the SSJ particle precipitation observations, the first step in determining 
SSUSI-SSJ conjunctions is finding the nearest SSUSI ”pixels” to each SSJ observation point and applying spatial 
smoothing to obtain SSUSI LBH conjunction values. This spatial smoothing contributes to an enhancement of 
the image structures through effective signal-to-noise improvement. With k as a positive integer, the ball-tree data 
structure (Omohundro, 1989) implemented in Sklearn's nearest neighbors functions, is used to computationally 
efficiently determine the nearest k SSUSI ILBHL ”pixels” to a given SSJ observation point. A representative value 
of ILBHL in conjunction with the SSJ observation is then computed as the distance weighted average of these 
SSUSI nearest neighbors. This conjunction value denoted as ILBHL, smoothed is computed as

𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =

𝑘𝑘
∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 (2)
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where SSUSI LBH emission at a given ”pixel” is denoted by ILBHL,i, the corresponding weights of each pixel's 
contribution, wi, is set to be inversely proportional to the great circle (Haversine) distance between the SSJ obser-
vation point and SSUSI pixel locations. These weight terms are then scaled such that their sum equals 1. For each 
of the SSJ observations, the nearest 10 pixels (k = 10) contributed to the SSUSI conjunction value, ILBHL, smoothed.

This process is repeated to retrieve LBHS conjunction data (ILBHS, smoothed). Since the SSUSI instrument records 
its images one cross-track swath at a time, this implies there is a slight temporal difference between the 10 pixels 
across track. However, the effect of this slight temporal lag is negligible compared to the 25 km spatial binning 
adopted in the production the SSUSI SDR product data. Overall, this distance weighted averaging is a robust 
methodology for providing spatial conjunction data between SSUSI and SSJ observations.

Strictly speaking, SSUSI points directly downward of the DMSP spacecraft once per sweep while in-situ SSJ 
sampling occurs every second, which may introduce up to about 20  s spatiotemporal mismatch between any 
pairs of SSUSI and SSJ observations. To account for such discrepancy, smoothing is also applied to SSJ electron 
and ion energy flux JE and JI data to yield JE,smoothed and JI,smoothed. Smoothing of the SSJ electron and ion total 
energy flux values are accomplished by taking the running mean of 10 consecutive observation points for each 
hemispheric DMSP pass using the uniform filter1d function implemented in SciPy. This value of 10 consecutive 
observation points was chosen to roughly match the resolution of the SSUSI data used. Smoothing also helps 
reduce the impact of single particle events that result from particles with energies greatly exceeding the SSJ 
instrument's maximum detectable energy of 30 keV. The interaction of this highly energized particle with the 
sensor materials results in strong particle flux across all detector channels. The use of smoothed SSJ electron and 
ion energy flux JE,smoothed and JI,smoothed in neural network analysis described in Section 3.3 thus allows supervisory 
learning from higher signal-to-noise data sets.

3. Data-Driven Auroral Modeling Approach
To develop a new assimilative mapping procedure of global auroral electron energy flux for SSUSI LBH emis-
sion data, three data analysis methods are combined. As shown in the flowchart displayed in Figure 3, this proce-
dure is designed to take SSUSI LBH emission data as sole input and transform into global assimilative maps 
of auroral electron energy flux through a combination of the following approaches: (a) Empirical Orthogonal 
Function (EOF) analysis described in Section 3.1, (b) assimilative mapping analysis using Optimal Interpolation 
(OI) described in Section 3.2, and (c) neural network modeling to predict auroral electron energy flux from LBH 
emission as described in Section 3.3.

3.1. Empirical Orthogonal Function (EOF) Analysis of LBH Emission

EOF analysis facilitates modeling the background model error covariance required in the OI; a vital step toward 
the development of assimilative maps of LBH emission. EOFs are a set of empirically-determined orthogonal 
functions that represent dominant eigenmodes of variability in LBH emission changes. Due to the spatially sparse 
and temporally irregular LBHL and LBHS emission data, we cannot use a conventional eigenvalue decomposi-
tion approach to EOF analysis or principal component analysis that relies on factorization of a sample covariance 
obtained from complete data sets. Instead, a sequential nonlinear regression analysis is used to determine EOFs 
from incomplete SSUSI data sets following the methods of Matsuo et al. (2002).

A key part of this alternate EOF approach is to reduce the effect of incomplete data by representing the EOFs 
using the polar-cap spherical harmonics basis functions developed for the AMIE (Richmond & Kamide, 1988) 

Figure 3. Flowchart describing how SSUSI LBH emission data are transformed to global assimilative maps of auroral 
electron energy flux by a combination of three data-driven modeling approaches. [2] The OI, which incorporates [1] EOF 
analysis results, generates assimilative maps of global LBH emission from SSUSI LBH data. Using [3] the pre-trained neural 
network predictive model of auoral electron energy flux, global maps of LBH emission are transformed into global maps of 
auroral electron energy flux.
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and used in the AMGeO (Matsuo, 2020). In the rest of the paper, we represent the basis functions as X(r), where 
r represents the spatial position in magnetic latitude and magnetic local time. EOFs are then expressed as a sum 
of these basis functions, Xβ, where columns of β are vectors of polar-cap spherical harmonic coefficients for the 
vth EOF β (v). If y′ is the residual SSUSI LBH binned observations ILBHL, binned and ILBHS, binned after removal of the 
mean at the location r and median time t of a given satellite high-latitude overpass, then y′ is decomposed as

𝑦𝑦′(𝑟𝑟𝑟 𝑟𝑟) = 𝛼𝛼(1)(𝑟𝑟)𝐗𝐗(𝑟𝑟)𝜷𝜷 (1)
+⋯ + 𝛼𝛼(𝑣𝑣)(𝑟𝑟)𝐗𝐗(𝑟𝑟)𝜷𝜷 (𝑣𝑣)

+ 𝑒𝑒′(𝑟𝑟𝑟 𝑟𝑟) (3)

where α represents the time-dependent scaling of the vth EOF, and e′ represents the residual observations after 
removing the mean and scaled EOF contributions. Sets of these α and β coefficients are determined as in Matsuo 
et al. (2002) wherein the QR method (or Gram-Schmidt method) is used to orthogonalize the vectors of harmonic 
coefficients β (v). Once β (v−1) is estimated, subsequent orthogonal directions β (v) are estimated using residual data. 
This process is then repeated to estimate two sets of eight EOFs from ILBHL, binned and ILBHS, binned data. All preproc-
essible SSUSI data from DMSP F16, F17, and F18 across both hemispheres during the week period was used.

To prevent nonphysical features arising from regression analysis of spatially sparse data using the polar-cap 
spherical harmonics, harmonic coefficients β (v) are regularized using the L2 norm (Tikhonov regularization) via 
Ridge regression as implemented in Scikit-Learn (Rifkin & Lippert, 2007). Here the objective function mini-
mized during the sequential nonlinear regression analysis has an additional penalty term as shown below,

𝐿𝐿(𝛽𝛽) =

𝑛𝑛
∑

𝑖𝑖=1

(

𝑦𝑦𝑖𝑖 −

𝑝𝑝
∑

𝑗𝑗=1

𝑥𝑥𝑖𝑖𝑗𝑗𝛽𝛽𝑗𝑗

)2

+ 𝜆𝜆

𝑝𝑝
∑

𝑗𝑗=1

𝛽𝛽2
𝑗𝑗

 (4)

where λ determines the strength of this penalty term, p is the total number of EOFs, and n is the number of obser-
vations. The value of λ minimally affects the spatial structure of EOFs, and the unit λ value is used in this work.

3.2. Assimilative Mapping Analysis of LBH Emission Using Optimal Interpolation (OI)

This study uses the assimilative mapping technique described in Richmond and Kamide  (1988) and Matsuo 
et al. (2005) and employed in the AMGeO software package (AMGeO Collaboration, 2019). The same approach, 
here referred to as the OI, is used in works by Shi et al. (2020), R. McGranaghan et al. (2016), Matsuo et al. (2015), 
Cousins et al. (2015), and Cousins et al. (2013) and is summarized in Matsuo (2020). The OI technique combines 
a prior background model and observations using uncertainty information given as the background model error 
and observation error covariances to produce a posterior mean of assimilative maps according to Bayes' rule. 
The OI analysis is conducted separately for the SSUSI LBHL and LBHS emissions, at the median time of each 
satellite hemispheric high-latitude overpass, using SSUSI LBH binned observations ILBHL, binned and ILBHS, binned 
from that overpass.

The OI is essentially a non-recursive application of the Kalman filter measurement update. Suppose y denotes 
a vector of SSUSI LBHL binned observations ILBHL, binned (or LBHS binned observations ILBHS, binned) at a given 
OI analysis time, xb and xa are vectors of the prior and posterior mean of LBHL emission on the AMGeO grid, 
defined by 24 latitude points and 37 local time points for a total of 888 grid points, and yb is the prior spatial 
prediction of SSUSI LBHL binned observations, the OI analysis xa is given using the Kalman measurement 
update equation as

𝐱𝐱𝐚𝐚 = 𝐱𝐱𝐛𝐛 +𝐊𝐊 (𝐲𝐲 − 𝐲𝐲𝐛𝐛) (5)

where K is a Kalman gain matrix which is a function of the background model error covariance Cb and the obser-
vation error covariance Cr as given below

� =
��,�◦����

��,�◦����� + ��
 (6)

where H denotes an interpolation operator that converts the LBHL emission on observation locations to the 
AMGeO grid, ρx,y and ρy,y are the localization correlation matrices specified using kernels developed in (Gaspari 
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& Cohn, 1999). For this optimal interpolation, the cut off localization distance of 18° is used following a default 
setting adopted in the AMGeO software. Note that H is implemented using polar-cap spherical harmonics basis 
functions X evaluated at observation locations as explained in (Matsuo, 2020).

For the prior (background model) mean xb, we chose to use the mean of LBH binned observations ILBHL, binned and 
ILBHS, binned computed for each satellite overpass as described in Section 2.3.2. Following the approach adopted in 
(Matsuo et al., 2015), the prior (background model) error covariance Cb is expressed as a low rank covariance 
using a set of leading eigenvectors approximated by EOFs as

𝐂𝐂𝐛𝐛 = 𝚪𝚪 < 𝜶𝜶,𝜶𝜶𝑇𝑇 > 𝚪𝚪
𝑇𝑇 (7)

where Γ is a matrix with 8 columns filled leading EOFs estimated from Section 3.1 and α is a vector of the 
time-dependent scaling coefficients of EOFs. The EOF coefficient covariance < α, α T > is approximated as a 
diagonal matrix using a sample variance computed from a time-series of 𝐴𝐴 �̂�𝜶(𝑡𝑡) estimated from the EOF analysis 
described in Section 3.1. Note 𝐴𝐴 𝚪𝚪 = 𝐗𝐗𝐠𝐠�̂�𝜷 where Xg is the polar cap spherical harmonics basis functions X(r = rg) 
evaluated on the AMGeO grid and 𝐴𝐴 �̂�𝜷 is a vector of harmonics coefficients estimated in Section 3.1.

The observation error covariance Cr is represented by a diagonal matrix with the assumption that errors of SSUSI 
LBHL binned observations ILBHL, binned (or LBHS binned observations ILBHS, binned) are uncorrelated. Although 
uncertainties are provided with the SSUSI SDR data product for both LBHL and LBHS emissions, it is not clear 
how they can be propagated through the prepossessing steps described in Sections 2.3.1 and 2.3.2. Instead obser-
vational error covariances Cr for ILBHL, binned and ILBHS, binned are specified using the variance of the observations in 
each spatial bin as described in Section 2.3.2.

3.3. Neural Network Predictive Modeling of Auroral Energy Flux From LBH Emission

We leverage the flexibility of neutral network modeling to learn nonlinear complex relationships between elec-
tron total energy flux using LBH emissions from SSUSI-SSJ conjunction data described in Section 2.4. After 
applying feature selection and engineering steps to ILBHL, smoothed, ILBHS, smoothed, JE,smoothed, and JI,smoothed as described 
in Section 3.3.1, Section 3.3.2 shows how a simple feedforward neural network, based off the artificial neural 
network originally described by McCulloch and Pitts (1943), is used for the machine learning of an auroral energy 
flux predictive model.

3.3.1. Feature Selection and Engineering

The neural network model is learned from three input feature data sets consisting of ILBHL, smooth, ILBHS, smooth, and 
ion energy flux activity mask derived from JI,smoothed, and the supervisory (output) data set of JE,smoothed. Since 
LBH radiances produced by electron and ion precipitation are additive (Knight & Strickland, 2013), the use of 
the third input feature of ion energy flux activity mask helps account for the ion contributions to LBH emission. 
For example, Sotirelis et al. (2013) excluded SSUSI-SSJ conjunction data in fitting of a linear model when the 
ratio between electron and ion flux exceeded a certain threshold. Following a similar vein, this third, binary input 
is based on the preprocessed in-situ SSJ measurements of ion energy flux JI,smoothed. This binary feature input, MI, 
takes on a value of one whenever the ion energy flux is sufficiently high and otherwise zero as described below.

�� =

⎧

⎪

⎨

⎪

⎩

1, if ��,�����ℎ�� > 0.1
����

��2 ⋅�⋅��

0, otherwise
 (8)

where an absolute cut-off threshold value of 0.1 𝐴𝐴
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐2
⋅𝑒𝑒⋅𝑒𝑒𝑒𝑒

 is set through the trial and error calibration based on 
the neutral network performance. To facilitate neural network training, ILBHL, smooth, ILBHS, smooth, and JE,smoothed are 
further scaled and normalized. Scaling and normalizing is often done to speed up the gradient descent algorithm 
employed when estimating weights. The distribution of ILBHL, smooth, ILBHS, smooth, and JE,smoothed data suggests a 
heavy-tailed data sample distribution with the presence of fairly high positive skewness. With such a distribu-
tion, standard normalization techniques, which involve removal of the mean and scaling to unit variance, are not 
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recommended since these techniques are strongly affected by outlier values. 
Instead, these values are normalized with the removal of the median value 
and scaled using the interquartile range.

One week's worth of SSUSI-SSJ conjunction data results in 698,000 conjunc-
tion points from 580 hemispheric high-latitude satellite passes. Reflecting 
the impact of geophysical conditions on data sets, the training and test sets 
are separated by their respective hemispheric passes instead of the more 
traditional point-by-point approach. In other words, SSUSI-SSJ conjunction 
data points from one particular hemispheric satellite pass are never separated 
into both the training and test sets. These hemispheric passes are randomly 
split into train and test sets with 522 passes used in the training set and 58 
used in the testing set.

3.3.2. Neural Network Model Design and Training

Considering there are only three input features with one output, we have opted 
for a shallower, wider neural network model design with three layers consist-
ing of an input layer, one hidden layer, and an output layer. The input layer 
takes in scaled ILBHL, smooth and ILBHS, smooth as well as MI as input, and has eight 
output neurons connected to the second, hidden layer. The second, hidden 
layer then outputs 8 neurons to the final layer. This hidden layer enables the 
neural network additional degrees of freedom in the nonlinear transformation 
of the inputs. For this hidden layer, we use the leaky relu activation function 
which provides many of the same benefits as the high-performance, tradi-
tional relu activation function while also addressing the commonly experi-
enced neuron death issue that can cause the model to be less adaptive to 
changing inputs (Xu et  al.,  2015). The final layer then outputs the model 

prediction for the scaled electron total energy flux JE,smoothed. This neural network design led to a total of 41 train-
able parameters, and the neural network is implemented using Python Keras 2.4.0.

The neural network model is trained using the Adam optimizer (Kingma & Ba, 2017) which is implemented in 
Keras 2.4.0 for an epoch limit of 200 epochs using the mean squared error (MSE) as the loss function. The Adam 
optimizer is chosen as the gradient descent algorithm due to its overall performance and robustness. Upon learn-
ing of each model, model parameters such as number of neurons, number of layers, number of training epochs, 
or hyper-parameters, are calibrated iteratively based on model performance evaluated using the test data set. To 
ensure optimal stopping of training, early stopping callback conditions are implemented. These callback condi-
tions stipulate that model training should stop if the model performance measured through the MSE loss function 
does not improve after a certain number of epochs. A stopping buffer of 40 epochs is used in this work. After the 
last epoch, the model parameters associated with an epoch with the lowest loss function value is chosen for the 
final model. Figure 4 displays how the MSE loss function varies across the epochs of the neural network train-
ing. After the first 10 epochs, the loss function values decrease slowly with increasing epochs with considerable 
variability which indicates that our model was quickly trained. For our final neural network model, the weights 
associated with the lowest cost epoch shown by the vertical red line are selected. It is important to note that the 
MSE value shown in Figure 4 is that of the scaled and normalized outputs.

4. Data Analysis Results
This section summarizes data analysis results from approaches described in Sections  3.1, 3.2, and  3.3. 
Sections 4.1 and 4.2 present the results from EOF analysis and assimilative mapping analysis of LBH emission 
data. Section 3.3 describes the prediction performance of the neural network model described in Section 3.3. For 
this performance assessment, the auroral electron energy flux is compared to LBH emission on a satellite track 
pass-by-pass basis.

Figure 4. The mean squared error (MSE) loss functions after each training 
epoch. Note the MSE value shown here does not correspond to true physical 
units due to the use of scaled and normalized inputs. The vertical red line 
denotes the epoch of minimum loss.
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4.1. Global Modes of LBH Emission Variability

Because LBHL emission intensity is proportional to the total electron energy 
flux, this section focuses on the global modes of LBHL emission variabil-
ity derived from preprocessed SSUSI LBHL emission data ILBHL, binned. The 
results from LBHS emission data and ILBHS, binned can be found in Support-
ing Information S1. Figure 5 shows the mean and three dominant modes of 
LBHL emission variability over February 17-23 2014. The mean pattern 
reflects a typical auroral oval with a stronger post-midnight emission, which 
appears similar to the diffuse auroral patterns found in other global auroral 
models such as the Ovation Prime (Newell et al., 2014). This mean pattern 
is also similar to the Hall and Pedersen conductance mean patterns associ-
ated with EOF analysis by R. McGranaghan et al. (2015) but shifted counter 
clockwise by a few hours. Table 1 shows the percentage variability explained 
by each mode along with the cumulative percentage. Overall this set of eight 

Figure 5. Global patterns of the mean and three dominant modes for LBHL emission variability estimated from preprocessed SSUSI LBHL emission data over 
February 17-23 2014. The mean pattern (top left) is shown in terms of photon flux in kilorayleigh. The EOF patterns are unit-less and normalized.

EOF # % Variability explained % Cumulative variability

EOF 1 21.8 21.8

EOF 2 5.0 26.8

EOF 3 3.0 29.8

EOF 4 1.9 31.7

EOF 5 2.0 33.7

EOF 6 1.5 35.2

EOF 7 1.4 36.6

EOF 8 1.0 37.6

Table 1 
The Variance in LBHL Emission Explained by the Leading 8 EOFs
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EOFs explains 37.6% of the observed variance from the mean of LBH emis-
sion with the first three modes being responsible for 29.8%. Most leading 
modes associated with the higher variance contribution exhibit large-scale 
features, while high-order modes are typically composed of much smaller 
spatial scale features. To facilitate geophysical interpretation of EOFs, corre-
lations of the time-dependent scaling coefficients of the leading three EOFs 

𝐴𝐴 �̂�𝜶(𝑡𝑡) with IMF and geomagnetic indices are shown in Table 2. To create a 
one-to-one time series that matches the irregular EOF analysis time interval 
t that is set to be the median time of each satellite high-latitude overpass, 
30-min running means of IMF and geomagnetic indices are computed using 
5-min NASA/GSFC's OMNI data centered at EOF analysis time t. No addi-

tional time lagging is done on the NASA/GSFC's OMNI data. Since these EOFs do not necessarily correspond to 
independent physical processes, each EOF correlates with multiple geophysical parameters.

EOF 1 accounts for 21.8% of the variability from the mean and represents a strengthening and weakening of the 
typical auroral oval shape as captured by the mean pattern. The amplitude of EOF 1 is strongly correlated with 
the AE index with a correlation coefficient of 0.84, and EOF 1 is therefore interpreted to represent changes of 
the overall auroral oval associated with geomagnetic activities. Features on the dayside are unphysical, resulting 
from the lack of DMSP SSUSI data coverage at the mid latitude noon sector. Our finding on the LBHL EOF 1 is 
generally consistent with findings of Hall and Pedersen EOF 1 reported in R. McGranaghan et al. (2015), with a 
slightly higher correlation of LBHL EOF 1 with the AE index. LBHL EOF 2 accounts for 5% of the variability 
and can be visually interpreted as an equatorward expansion and poleward contraction of the auroral oval that is 
mostly dawn-dusk symmetric. The impact of the lack of DMSP SSUSI coverage shows up as unphysical features 
in the mid latitude night side. This LBHL EOF 2 is similar to the appearance of Hall and Pedersen EOF 2 reported 
in R. McGranaghan et al. (2015) with a stronger feature on the high latitude dusk area. EOF 3 accounts for only 
3% of the variability, but it can be speculatively described as a westward shifting of the auroral oval associated 
with substorms, introducing a characteristic dawn-dusk asymmetry. This LBHL EOF 3 is also similar to the 
appearance of Hall and Pedersen EOF 3 reported in R. McGranaghan et al. (2015) with some differences.

The weak correlation of LBHL EOF 2 and EOF 3 with IMF and geomagnetic indices may suggest difficulties 
to identify these modes only from 1 week of DMSP SSUSI data. Because of the need to take 30-min running 
means of IMF and geomagnetic indices in these correlation studies to match with the EOF analysis interval, it is 
challenging to establish a correlation during rapid changes associated with aurora dynamics.

EOF AE index AL index By (GSM) Bz (GSM)

1 0.836 −0.824 0.407 −0.532

2 −0.197 0.181 0.211 0.173

3 −0.014 0.032 0.031 −0.219

Table 2 
Pearson Correlations of 𝐴𝐴 �̂�𝜶 With IMF and Geomagnetic Indices

Figure 6. Assimilative mapping of LBHL emissions for the SSUSI pass is indicated in Figure 1. The dynamic range for all subplots is 0–2 kilorayleighs with darker 
colors indicating smaller radiance in the linear color contour scale defined as the colorbar for Figure 2. Left: Prior State or sample mean of LBHL emissions for the 
week long frame selected. Middle: Assimilation result of LBHL emission after ingestion of SSUSI LBHL observations shown on the right subplot. Right: The spatially 
averaged SSUSI LBHL observations fed into the AMGeO procedure taken from the Northern Hemispheric pass by DMSP F17 February 20th 4:02 UTC.
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4.2. Assimilative Maps of LBH Emission

Using the OI methodology described in Section 3.2, assimilative maps of both LBHL and LBHS emissions are 
generated for all 58 hemispheric high-latitude satellite passes from the test data set. As explained in Section 3.3.1, 
these 58 passes, out of a total of 580 hemispheric high-latitude satellite passes, are set aside from neural network 
training for testing. The middle plot of Figure 6 presents an assimilative map of LBHL emission for the same 
satellite pass presented in Figure 2 in the preprocessing Section and Figure 8. The prior mean and observations 
ingested into the OI are shown on the left and right plots of Figure 6, respectively. The influence of observational 
noise is likely manifesting as some unphysical features in the dawn region of the assimilative map. More system-
atic calibrations of the observational error covariance and the covariance localization parameter will likely help 
mitigate these issues. Future work with a larger data set is expected to improve the quality of background model 
error covariance modeled with EOFs (see Equation 7) as well as resulting assimilative maps. Figure 7 shows 
another OI result from DMSP F16 overpass over the Northern Hemisphere on February 22nd at 2:37 UTC, 
showing a more typical auroral feature with strong features at the dusk sector. This example suggests a promising 
capability of the OI to reproduce both the discrete and diffuse aurora features.

4.3. Prediction of Auroral Energy Flux From LBH Emission

To evaluate the performance of the trained neural network model to predict out-of-sample electron total energy 
flux, we use 58 hemispheric polar passes withheld from training. Note that a total of 580 DMSP hemispheric 
high-latitude satellite passes is randomly divided into training and test sets of 522 and 58 passes as described in 
Section 3.3.2. For comparison, the prediction by using the S13 linear empirical model of Sotirelis et al. (2013) is 
shown. Note that the scope of comparison of the neural network model to the S13 model that was developed for 
a broader range of cases is limited, and intended only to demonstrate the feasibility and potential of the neural 
network modeling approach prototyped in this study for future large-scale development efforts.

Figure 8 shows the model prediction for a DMSP F17 Northern Hemispheric pass centered at 4:02 UTC on 
February 20th. This is the same pass shown in Figure 2. The middle plot shows the three inputs (scaled ILBHL, smooth 
and ILBHS, smooth as well as MI) into the neural network model. The top plot shows the auroral energy flux prediction 
output from the neural network model (orange) and the S13 prediction (cyan) along with the auroral electron 
energy flux from the test set (red). The bottom plot shows the spectrogram of the electron energy fluxes recorded 
by the SSJ instrument along this pass. For this pass, we see the neural network model and S13 predictions are 
similar in the sense that both underestimate higher values of observed electron energy flux but follow the overall 
trend over time. While the neural network model and S13 perform comparably for the hemispheric test pass 
shown in Figure 8, the hemispheric pass by DMSP 17 19 February 2014 at 2:32 UTC on February 19th shown 
in Figure 9 demonstrates the limitation of S13. We can see the auroral emission and precipitation signal over this 
pass have three peaks. The last precipitation peak is not well captured in LBHL emission data which causes the 
S13 prediction to fail, while the neural network model prediction closely matches the observed auroral electron 
flux signal. We see here the advantage of the neural network approach to represent a nonlinear complex rela-
tionship between input and supervisor (output) data. Figure 10 shows the comparison for another test pass over 
the Southern Hemisphere by DMSP F16 on February 19th at 8:24 UTC. Here both the neural network and S13 
models erroneously predict a high activity region at the beginning of the pass that corresponds to the dusk side 
of this dawn-dusk DMSP F16 pass. This duskside high activity region most likely results from the impact of high 
ion flux on LBH emission that is not adequately portrayed by the use of an ion flux activity mask.

The overall model performance is summarized in Tables 3 and 4 to examine the connection to the signal-to-
noise ratio of training data at different geomagnetic activity levels. Across the 58 test hemispheric high-latitude 
satellite passes, the neural network model performs better during high geomagnetic activity when stronger input 
signals from LBH emission data as indicated by the Pearson correlations between the prediction and test data 
for AE levels higher or lower that 450 nT summarized in Table 3. The median AE index over the time interval 
of each pass computed from 5-min AE values is used. During geomagnetically quiet times, it is expected the 
neural network to have more trouble with distinguishing meaningful signals from noises in traning data sets of 
ILBHL, smooth, ILBHS, smooth, and JE,smoothed, resulting in poorer performance for test passes with lower AE values. From 
Table 3, we see that for both high and low geomagnetic activity levels, the neural network model prediction 
correlates better with observed electron flux than the S13 prediction. This performance difference is even more 
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Figure 7. Assimilative mapping of LBHL emissions for the Northern Hemispheric pass by DMSP F16 February 22nd 2:37 UTC shown in the same format as Figure 6. 
The dynamic range for all subplots is 0–2 kilorayleighs with darker colors indicating smaller radiance in the linear color contour scale defined as the colorbar for 
Figure 2.

Figure 8. Neural network model prediction of auroral electron energy flux for the same Northern Hemisphere satellite pass shown in Figure 1 by DMSP F17 at 4:02 
UTC on February 20th. Top: Neural network (NN) and S13 predictions along with observed electron total energy flux by special sensor J (SSJ). Middle: Input data: 
scaled ILBHL, smoothed, ILBHS, smoothed, and ion flux activity mask MI. Bottom: Electron energy spectrogram recorded by SSJ shown in log-scale.
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pronounced for higher activity passes. Table 4 shows the RMSE prediction error for AE levels higher or lower 
that 450 nT. Under geomagnetically active conditions, the RMSE value for the neural network prediction is worse 
in comparison to quiet times, even though the higher signal-to-noise data available during active times yields 
a better performance measured in terms of the correlations. These RMSE values is also likely influenced by 
significant outlier flux values detected by the SSJ instrument. When compared to the RMSE of the S13 prediction 
error, we note a better overall performance of the neural network model for active passes. For less active passes, 
the S13 model has a significantly lower RMSE than the neural network model prediction. This difference may be 
attributed to the result of lower signal-to-noise of input signals during geomagnetic quiet times with the use of 
additional input features in training of the neural network model.

5. Use Case: Assimilative Mapping of Auroral Energy Flux
This section presents a use case for the assimilative mapping procedure of auroral energy flux developed using 
a combination of three data-driven approaches described in Section 2.4 for DMSP F17 Northern Hemisphere 
high-latitude overpass at 4.02 UTC on February 20th. As shown in the workflow of the procedure depicted in 
Figure 3, the procedure first yields assimilative maps of LBHL and LBHS emission which are then transformed 
into assimilative maps of auroral electron energy flux using the neural network predictive model. This neural 
network model requires a map of the ion flux activity mask in addition to assimilative maps of LBHL and LBHS 
emission, but the ion energy flux information from the SSJ instrument is not available outside of the DMSP 
spacecraft track. The ion flux activity mask is thus built using ion flux from the Ovation Prime model (Newell 
et al., 2009). The left plot of Figure 11 shows the Ovation Prime ion energy flux map for February 20th at 4:02 

Figure 9. Neural network model prediction of auroral electron energy flux for the Northern Hemisphere satellite pass by DMSP F17 at 2:32 UTC on February 19th, 
displayed in the same format as Figure 8.
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UTC, while the right plot shows a map of the ion flux activity mask with values of 1 where the ion total energy 
flux is more than 𝐴𝐴 0.1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒⋅𝑐𝑐𝑐𝑐2
 and 0 elsewhere. Note that the small unphysical feature present around noon results 

from a known artifact of the 2010 Ovation Prime model (Newell et al., 2014). Figure 12 presents the assimila-
tive mapping result of auroral energy flux using LBHL and LBHS emission data from the DMSP F17 pass over 
the Northern Hemisphere at 4:02 UTC on February 20th. This is the same pass shown in Figure 1. This use 
case shows how the proposed end-to-end data-driven modeling approach can transform partial images of LBH 
emission from the SSUSI instrument into global assimilative maps of auroral electron energy flux, demonstrating 
a new exciting data assimilative mapping capability expected to expand the usage of currently available space-
based FUV imagers to address pressing MIT science questions discussed in the introduction section.

6. Discussion and Future Work
In this section, we discuss the future work required to overcome some limita-
tions identified in this study. Although the data preprocessing steps to remove 
solar influence from the SSUSI SDR data product described in Section 2.3.1 
has worked effectively for most DMSP satellite hemispheric passes, some 
passes still exhibit significant noise. This noise coupled with the relatively 
high dynamic range of the LBH emission creates a unique challenge to data-
driven modeling using LBH emission data, impacting not only the quality of 
the neural network modeling, EOF analysis and OI presented in this study 
but also any attempts to extract physical parameters from LBH emission 

Figure 10. Neural network model prediction of auroral electron energy flux for the Northern Hemisphere satellite pass by DMSP F16 at 8:24 UTC on February 19th, 
displayed in the same format as Figure 8.

Median AE index NN S13

AE > 450 0.74 0.59

AE < 450 0.62 0.40

All Conditions 0.71 0.59

Table 3 
Pearson Correlation Between Prediction and Test Data
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data. In the future, it may be helpful to set up a quality flag to automatically 
exclude these passes from training. Issues can also be overcome by increas-
ing the amount of data to be fed into a neural network and EOF non-linear 
regression analysis, which effectively increases the signal-to-noise ratio. The 
uncertainty associated with the solar influence removal can be incorporated 
into the OI in the form of an observational error covariance with spatially 
correlated errors. In order to cover a wide range of geophysical conditions 
and improve statistical confidence of analysis results in the future, it is imper-
ative to learn global modes (e.g., EOF) of LBH emission variability and a 
neural network predictive model of auroral energy from a much larger data 

set of SSUSI and SSJ observations than 1 week used for demonstration of the data-driven modeling approach 
developed in this study.

In this paper, LBH emission data from both hemispheres are used to create a universal EOF set to overcome 
this limitation. Even with the use of data from both hemispheres, inhomogeneous sampling of LBH emission by 
DMSP satellites will likely present a challenge to EOF analysis. Figure 13 shows the total number of spatially 
binned LBHL observations available at each bin location across the week of data used. The lack of data coverage 
in both the day and nightside mid-latitude regions is evident. Although the EOF analysis has attempted to miti-
gate the data gap issues through the usage of the Tikhonov regularization, it results in some unphysical features 
present in EOF patterns as shown in Figure 5. To further reduce the effect of the data gap in the future, additional 
regularization techniques can be applied as well as the incorporation of weighted observation errors following 
the methods of Cousins et al. (2013).

In addition to improvements of neural network predictive modeling of auroral electron energy flux from LBH 
emission with the use of more SSUSI-SSJ conjunction data, one future avenue is to automate the optimization 
of hyper-parameters of the neural network using techniques such as cross validation and genetic algorithms 
instead of analyzing the validation results and tuning the model structure with hopes of finding the optimal 
structure manually. As mentioned briefly in Section  3.3, considerable difficulties arise in distinguishing the 
contributions from precipitating ions from precipitating electrons to LBH radiance. Although we present some 
success with our neural network model performance, this model is still limited in its capacity to predict electron 
total energy flux as a result of several geophysical factors. Previous estimates have shown that precipitating 
protons may be approximately 5 times more efficient per unit of energy flux than precipitating electrons in their 
production of LBH radiance (Knight et al., 2012). Different physical processes, such as excitation via direct elec-
tron impact and cascading induced excitation, are known to contribute to LBH emissions to an uncertain extent 

AE index NN S13

AE > 450 5.6833e11 7.612e11

AE < 450 2.2205e11 6.28e10

All Conditions 3.1828e11 3.84e11

Table 4 
Auroral Energy Flux RMSE Prediction Error 𝐴𝐴

[

𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐2
⋅𝑠𝑠𝑠𝑠⋅𝑠𝑠

]

Figure 11. Left: Map of ion flux from the Ovation Prime model on February 20th, 4:02 UTC. Right: Map of ion flux activity mask (MI) derived from the Ovation 
Prime ion flux.
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(Ajello et al., 2020). Such uncertainty, in tandem with the lack of in-situ ion 
precipitation measurements outside the spacecraft track, poses significant 
challenges. A separate model to predict auroral ion energy flux using the 
SSUSI LBH emission data alongside SSUSI H lyman-alpha band emission 
data, following the work of (Knight et al., 2012), could help to reduce the 
uncertainty introduced by the use of ion flux activity mask built using the 
Ovation Prime model in the assimilative mapping procedure. Another impor-
tant avenue for future work is to address the validation of off-nadir SSUSI 
data. Off-nadir training data with the SSJ instrument would require multiple 
DMSP spacecraft simultaneously sampling the same magnetic latitude and 
local time region. Since these are rare events, to build up sufficient train-
ing data for off-nadir conjunctions, it is necessary to use a much larger time 
frame of data. Lastly, the neural network model is predicting electron flux 
from two FUV integrated radiance bands in this study, however, the SSUSI 
instrument is also capable of recording hyperspectral images, where, for each 
observation pixel, one can observe differential radiances across the full FUV 
spectrum. It may be interesting to explore if a predictive skill of the neural 
network model can be improved from the usage of the full LBH FUV spec-
trum. In addition to validation of the neural network model, cross validation 
of the final assimilation results of auroral energy flux against independent 
electron precipitation data (e.g., FAST, POES, etc) is a critical step in the 
future development of a production version of the model. With a fully devel-
oped model, comparisons against other existing auroral energy flux models 
(e.g., OVATION Prime) can be made using metrics such as hemispherically 
integrated electron energy flux.

Figure 12. Assimilative mapping of auroral electron energy flux using SSUSI 
LBH emission data from the DMSP F17 pass over the Northern Hemisphere at 
4:02 UTC on February 20th. This is the same pass shown in Figure 1.

Figure 13. Total spatial coverage of LBHL observations from both Northern and Southern Hemisphere passes in the Apex 
geomagnetic coordinates.
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7. Conclusions
In this study, we have developed a new data-driven modeling approach that allows direct ingestion of satellite 
LBH emission imager data into global instantaneous assimilative mappings of electron total energy flux unlike 
in past assimilative mapping approaches wherein retrieved emission products are used (e.g., Lu, 2017, refer-
ences therein). This is achieved through the combination of three machine learning techniques described in 
Section 2.3: defining modes of variability through the usage of EOFs, spatial prediction of LBH emission using 
OI, and relating LBH emission to precipitating electron energy flux with neural network modeling. The dominant 
modes of auroral emission variability estimated using 1 week of the SSUSI data in this work are found to be 
generally consistent with the dominant modes of auroral Pedersen and Hall conductance which were determined 
from a large volume of the SSJ data by R. McGranaghan et al. (2015). Within the limited scope of comparison 
over 17–23 February 2014, a new nonlinear empirical model to predict auroral electron energy flux from LBH 
emission data trained using the neural network outperforms the linear empirical model predicting electron total 
energy flux from LBHL emission outlined in Sotirelis et al. (2013), yielding better out-of-sample prediction skills 
measured in terms of correlation and RMSE, especially under higher geomagnetic activity conditions. This high-
lights neural network's ability to account for a non-linear relationship between LBH emission and auroral energy 
flux and underscores the efficacy of the use of ion flux information as an additional input feature in training. 
With more training data and validation of the neural network model and EOFs, the end-to-end data driven mode-
ling approach developed in this study has the potential to achieve a greater spatial predictive performance than 
demonstrated with limited amounts of data in this study. Finally, with details of data provenance and data analysis 
steps, this paper serves as a blueprint for future comprehensive development efforts for a data-driven approach 
to auroral energy flux that can take advantage of the wider spatial coverage provided by over 12 years of SSUSI 
FUV emission data. A fully developed and validated data assimilative mapping capability can be incorporated 
into the AMGeO open source software (AMGeO Collaboration, 2019; Matsuo, 2020) to address science ques-
tions regarding global auroral dynamics including but not limited to substorm surges, hemispheric asymmetry, 
and dawn-dusk asymmetry of the aurora.

Data Availability Statement
The publicly available solar wind and geomagnetic activity indices data are obtained from the GSFC Space 
Physics Data Facility OMNIWeb FTP interface at https://omniweb.gsfc.nasa.gov. All the results presented in this 
paper are produced from publicly accessible data sets using the following open source software tools available 
from respective repositories or as part of Python open source packages. The code used for the optimal interpo-
lation of LBH emissions is part of the AMGeO open source software (https://doi.org/10.5281/zenodo.3564915) 
available upon registration at https://amgeo.colorado.edu/. The code used to preprocess the SSUSI and SSJ data, 
create SSUSI-SSJ conjunction data sets, and train the neural network model is available as open source soft-
ware (https://doi.org/10.5281/zenodo.4587943) at https://zenodo.org/record/4587943. We acknowledge the use 
of following Python open source packages: Numpy, Scikit-Learn, SciPy, and Keras.
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